
Program Repair
without Regret

Barbara Jobstmann
EPFL and Jasper DA

CNRS, Verimag

Joint Work with
Christian von Essen

UJF, Verimag
Google Zurich

4th April 2014 B. Jobstmann 1

Agenda

• Introduction
– Motivation

– Program Repair, related choices, our choices

– Example

• Our Repair approach
– Exact and relaxed repair problem

– Reduction to classical synthesis

– General and efficient algorithm

– Implementation and results

• Conclusion and future work

4th April 2014 B. Jobstmann 2

Motivation

4th April 2014 B. Jobstmann 3

• Debugging can be tedious

– Find the bug

– Locate it

– Fix it

Motivation

4th April 2014 B. Jobstmann 4

• Debugging can be tedious

– Find the bug: model checking

– Locate it: automatically analyze/modify/explain CEX/witness

– Fix it: automatically repair

Automatic Repair

• Given faulty program +
(explicit/implicit) specification

• Search for modification s. t. modified program is
– “correct” and

– “similar” to the original program

• Key choices in an repair approach:
– Type of programs and specifications

– Which modification do you allow?

– How to you find and check corrections?

– What do you mean by “similar”?

4th April 2014 B. Jobstmann 5

Key choices
1. Type of programs and specifications

– Data or control-oriented
– Specific properties (e.g., deadlock), general properties

(e.g., given in a logic), explicit/implicit

2. Which modification do you allow?
– Syntactic modifications, e.g., based on expression

language, genetic algorithms, …

3. How to you find and check corrections?
– “Smart” enumeration and verification
– “Synthesize” (combine search and verification)

4. What do you mean by “similar”?
– Focus on syntactic similarity (e.g., edit distance, …)

4th April 2014 B. Jobstmann 6

Our Choices [following CAV’05]

1. Type of programs and specifications
– Reactive finite-state programs (Mealy machines)
– General properties specified using LTL)

2. Which modification do you allow?
– Theory: functions over state/input variables
– Implementation: expression language

3. How to you find and check corrections?
– Combine search and verification using game theory

4. What do you mean by “similar”?
– Syntactic similarity (given by expression language)
– Semantic similarity (NEW in this work)

4th April 2014 B. Jobstmann 7

Choice 1: Programs and specifications
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014 8

State variables:

mainLight in {Red, Yellow, Green}

sideLight in {Red, Yellow, Green}

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Behavior represented as (infinite) sequence of
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔

Step 1 2 3 4 …

mL Red Yellow Green Red …

sL Red Red Red Yellow …

mS True True False … …

sS False False True … …

Program represented as set of behaviors: 𝐿 𝑃

Choice 1: Programs and specifications
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014 9

State variables:

mainLight in {Red, Yellow, Green}

sideLight in {Red, Yellow, Green}

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Specification represented as set of behaviors: 𝐿(φ)

Program represented as set of behaviors: 𝐿 𝑃

Specification:
never(mainLight == Green
 and
 sideLight == Green)

Behavior represented as (infinite) sequence of
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔

Choice 2: Modifications
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014 10

State variables:

mainLight in {Red, Yellow, Green}

sideLight in {Red, Yellow, Green}

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Specification:
never(mainLight == Green
 and
 sideLight == Green)

???

Allowed modifications:
 function over state and input variables

Specification represented as set of behaviors: 𝐿(φ)

Program represented as set of behaviors: 𝐿 𝑃

Behavior represented as (infinite) sequence of
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔

Choice 3: Repair Search using Games
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014 11

State variables:

mainLight in {Red, Yellow, Green}

sideLight in {Red, Yellow, Green}

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Specification:
never(mainLight == Green
 and
 sideLight == Green)

???

Allowed modifications:
 function over state and input variables

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Winning objective: repaired program is correct, i.e.,
 𝐿 𝑃′ ⊆ 𝐿(φ)

Specification represented as set of behaviors: 𝐿(φ)

Program represented as set of behaviors: 𝐿 𝑃

Behavior represented as (infinite) sequence of
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔

Choice 4: Similarity
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014 12

State variables:

mainLight in {Red, Yellow, Green}

sideLight in {Red, Yellow, Green}

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}
???

Allowed modifications:
“simple” function over state and input variables

Input variables:

mainSensor in {True, False}

sideSensor in {True, False}

Specification:
never(mainLight == Green
 and
 sideLight == Green)

Specification represented as set of behaviors: 𝐿(φ)

Program represented as set of behaviors: 𝐿 𝑃

Winning objective: repaired program is correct, i.e.,
 𝐿 𝑃′ ⊆ 𝐿(φ)

Behavior represented as (infinite) sequence of
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔

Simple Repair
mainLight = Red;
sideLight = Red;
always @(posedge clock)
begin
 case (mainLight)
 Red: if (mainSensor)
 mainLight = Yellow;
 Yellow: mainLight = Green;
 Green: mainLight = Red;
 endcase // case (mainLight)
 case (sideLight)
 Red: if (sideSensor)
 sideLight = Yellow;
 Yellow: sideLight = Green;
 Green: sideLight = Red;
 endcase // case (sideLight)
end

4th April 2014

false

Specification:
never(mainLight == Green
 and
 sideLight == Green)

 No car crash: correct repair
 Main street blocked
 What went wrong?

Lost intended behavior; changed
behaviors unnecessarily

Idea: semantic similarity
• Keep correct behaviors
• Modifications must not

effect correct behaviors

Extend objective: repair keeps correct behaviors
𝐿 𝑃 ∩ 𝐿 φ ⊆ 𝐿 𝑃′

(mainSensor & !(sideLight == Red & sideSensor))

Winning objective: repaired program is correct, i.e.,
 𝐿 𝑃′ ⊆ 𝐿(φ)

[Angelic debugging, Chandra et al.]

Agenda

• Introduction
– Motivation

– Program Repair, related choices, our choices

– Example

• Our Repair approach
– Exact and relaxed repair problem

– Reduction to classical synthesis

– General and efficient algorithm

– Implementation and results

• Conclusion and future work

4th April 2014 B. Jobstmann 14

Exact Repair Problem

Program 𝑃′ is an “exact repair” of program 𝑃 for
specification φ if
(i) all correct behaviors of 𝑃 w.r.t. φ are part of 𝑃′,
(ii) all behaviors of 𝑃’ are correct w.r.t. φ, i.e.,

𝐿 𝑃 ∩ 𝐿 φ ⊆ 𝐿 𝑃′ ⊆ 𝐿(φ)

4th April 2014 B. Jobstmann 15

P’

Ideal but sometimes too restrictive:
• exact repair might not exists
• exact repair might not be required

φ = φ𝑎 → φ𝑔
Behaviors that do not satisfy φ𝑎
are correct but might not need to be
preserved

 φ P

Relaxed Repair Problem

4th April 2014 B. Jobstmann 16

P’ φ P ψ

Program 𝑃′ is an “relaxed repair” of program 𝑃 for
specifications φ and 𝜓 if
(i) all correct behaviors of 𝑃 w.r.t. 𝜓 are part of 𝑃′,
(ii) all behaviors of 𝑃’ are correct w.r.t. φ, i.e.,

𝐿 𝑃 ∩ 𝐿 𝜓 ⊆ 𝐿 𝑃′ ⊆ 𝐿(φ)

Some choices for 𝜓

• Exact repair 𝜓 = φ

• Assume-Guarantee:
if φ = φ𝑎 → φ𝑔, then 𝜓 = φ𝑎 ∧ φ𝑔

• Classical repair 𝜓 = ∅

4th April 2014 B. Jobstmann 17

Reduction to Classical Synthesis

Given two specifications φ and 𝜓 over variables
𝑉 = 𝐼 ∪ 𝑂 and two programs 𝑃 and 𝑃’, then 𝑃′is a
relaxed repair of 𝑃 if and only if 𝑃′satisfies the
following formula

𝐿 𝑃′ ⊆ 𝛼 with

𝛼 = 𝐸(𝑉)𝜔 ∖ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉∪ 𝐿 𝑃 ∩ 𝐿(φ)

4th April 2014 B. Jobstmann 18

(All behaviors with a sequence of inputs for which P violates the spec)

There exists a relaxed repair for program 𝑃 w.r.t.
φ and 𝜓 if and only if language 𝛼 is realizable.

General Algorithm

1. Construct an (Buchi) automaton 𝐴𝛼 for

𝛼 = 𝐸(𝑉)𝜔 ∖ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉∪ 𝐿 𝑃 ∩ 𝐿(φ)

𝐴𝛼 can be constructed because

• 𝑃, 𝜓, φ can be represented as Buchi automata and

• Buchi automata are closed under intersection,
union, projection, and complementation

2. Synthesize 𝑃’ using 𝐴𝛼 as specification

4th April 2014 B. Jobstmann 19

Efficient Algorithm (1)

4th April 2014 B. Jobstmann 20

Lemma: Given program 𝑃 and LTL formula 𝜓 over
variables 𝑉 = 𝐼 ∪ 𝑂, for all words 𝑤 ∈ 𝐸(𝑉)𝜔

𝑤 ∈ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉⟺ 𝑃(𝑤 ↓𝐼) ∈ 𝐿(𝜓)

• This enables a simple procedure to check if a word

produced by 𝑃′ lies in 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉

• A synthesizer searching for 𝑃′ that satisfies α, can
simulate 𝑃 and check it against 𝜓 to decide if 𝑃′ is
allowed to deviate.

Efficient Algorithm (2)

4th April 2014 B. Jobstmann 21

P
faulty program

P*
P extended

with allowed
modifications

𝐴𝜑 𝐴¬𝜓

𝐴𝑒𝑞

Inputs

New Repair Approach:
𝐴¬𝜓 … checks when P’

 can deviate from P
𝐴𝑒𝑞 … checks when the output

 of P and P’ coincide

Classical Repair Approach:
𝐴𝜑 … defines objective of

 synthesis/repair game

New Objective:
𝐴𝜑 and (𝐴¬𝜓 or 𝐴𝑒𝑞)

Implementation

• Ideas/choice:
– Modification restricted to expressions

– Use MC instead of game engine:
• encode “interesting” strategies using initial states (e.g., all

memoryless strategies)

• an initial state that does not lead to a CEX gives a correct
repair.

• Drawbacks: explodes with considered strategies

• Benefits: can make use of any MC (and SEC optimizations)

• Prototype based on NuSMV (with Cudd)
– Tiny modification to return initial state(s) without CEX

4th April 2014 B. Jobstmann 22

PCI arbiter (partial specification)

• PCI Bus

• n Devices

• n specifications
always(ri implies eventually gi)
checked in isolation

• Off by 1 error

• Approach without lower bound gives access to
device i forever

• Our approach fixes off by 1 error

4th April 2014 B. Jobstmann 23

Processor (unclear error location)

• Error in one of the ALUs

• Partial specification

• Multiple suspected error locations

• Approach without lower bound approach may
modify all ALUs

• Our approach only modifies faulty ALU

4th April 2014 B. Jobstmann 24

Read-Write-Lock (minimal locking)

• Faulty implementation leads to dead-lock

• Allow introduction of a lot of locking

• Approach without lower bound may lock
everything

• Our approach introduces only necessary locks

4th April 2014 B. Jobstmann 25

Preliminary Results

4th April 2014 B. Jobstmann 26

Agenda

• Introduction
– Motivation

– Program Repair, related choices, our choices

– Example

• Our Repair approach
– Exact and relaxed repair problem

– Reduction to classical synthesis

– General and efficient algorithm

– Implementation and results

• Conclusion and future work

4th April 2014 B. Jobstmann 27

Conclusions

• New notion of program repair that
– ensures that correct behaviors are kept

– supports fixing bugs incrementally

– facilitates repair with incomplete specifications

– avoids degenerated repairs

• Algorithm based on reactive program
synthesis

• Preliminary implementation supporting our
claims of obtaining “better” repairs

4th April 2014 B. Jobstmann 28

Future Work

• Quantitative notions of semantic similarity

– Count ratio of modified paths vs all paths

– Count ratio of modified symbols

– Define distance measure between symbols

• Repairs with look-ahead to increase the
number of repairable systems

• Repairing infinite-state system

4th April 2014 B. Jobstmann 29

