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Motivation 

4th April 2014 B. Jobstmann 3 

• Debugging can be tedious 

– Find the bug 

– Locate it 

– Fix it 



Motivation 
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• Debugging can be tedious 

– Find the bug: model checking 

– Locate it: automatically analyze/modify/explain CEX/witness 

– Fix it: automatically repair 



Automatic Repair 

• Given faulty program +  
(explicit/implicit) specification 

• Search for modification s. t. modified program is  
– “correct” and 

– “similar” to the original program 

• Key choices in an repair approach: 
– Type of programs and specifications 

– Which modification do you allow? 

– How to you find and check corrections? 

– What do you mean by “similar”? 
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Key choices 
1. Type of programs and specifications 

– Data or control-oriented 
– Specific properties (e.g., deadlock), general properties 

(e.g., given in a logic), explicit/implicit 

2. Which modification do you allow? 
– Syntactic modifications, e.g., based on expression 

language, genetic algorithms, … 

3. How to you find and check corrections? 
– “Smart” enumeration and verification 
– “Synthesize” (combine search and verification) 

4. What do you mean by “similar”? 
– Focus on syntactic similarity (e.g., edit distance, …) 
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Our Choices [following CAV’05] 

1. Type of programs and specifications 
– Reactive finite-state programs (Mealy machines) 
– General properties specified using LTL) 

2. Which modification do you allow? 
– Theory: functions over state/input variables 
– Implementation: expression language 

3. How to you find and check corrections? 
– Combine search and verification using game theory 

4. What do you mean by “similar”? 
– Syntactic similarity (given by expression language) 
– Semantic similarity (NEW in this work) 
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Choice 1: Programs and specifications 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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State variables: 

mainLight in {Red, Yellow, Green}  

sideLight   in {Red, Yellow, Green}  

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Behavior represented as (infinite) sequence of 
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔 

Step 1 2 3 4 … 

mL Red Yellow Green Red … 

sL Red Red Red Yellow … 

mS True True False … … 

sS False False True … … 

Program represented as set of behaviors: 𝐿 𝑃  



Choice 1: Programs and specifications 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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State variables: 

mainLight in {Red, Yellow, Green}  

sideLight   in {Red, Yellow, Green}  

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Specification represented as set of behaviors: 𝐿(φ) 

Program represented as set of behaviors: 𝐿 𝑃  

Specification: 
never(mainLight == Green 
 and  
            sideLight == Green) 

Behavior represented as (infinite) sequence of 
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔 



Choice 2: Modifications 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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State variables: 

mainLight in {Red, Yellow, Green}  

sideLight   in {Red, Yellow, Green}  

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Specification: 
never(mainLight == Green 
                          and  
            sideLight == Green) 

??? 

Allowed modifications: 
 function over state and input variables 

Specification represented as set of behaviors: 𝐿(φ) 

Program represented as set of behaviors: 𝐿 𝑃  

Behavior represented as (infinite) sequence of 
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔 



Choice 3: Repair Search using Games 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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State variables: 

mainLight in {Red, Yellow, Green}  

sideLight   in {Red, Yellow, Green}  

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Specification: 
never(mainLight == Green 
                          and  
            sideLight == Green) 

??? 

Allowed modifications: 
 function over state and input variables 

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Winning objective: repaired program is correct, i.e., 
  𝐿 𝑃′ ⊆ 𝐿(φ) 

Specification represented as set of behaviors: 𝐿(φ) 

Program represented as set of behaviors: 𝐿 𝑃  

Behavior represented as (infinite) sequence of 
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔 



Choice 4: Similarity 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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State variables: 

mainLight in {Red, Yellow, Green}  

sideLight   in {Red, Yellow, Green}  

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 
??? 

Allowed modifications: 
“simple” function over state and input variables 

Input variables: 

mainSensor in {True, False} 

sideSensor   in {True, False} 

Specification: 
never(mainLight == Green 
                          and  
            sideLight == Green) 

Specification represented as set of behaviors: 𝐿(φ) 

Program represented as set of behaviors: 𝐿 𝑃  

Winning objective: repaired program is correct, i.e., 
  𝐿 𝑃′ ⊆ 𝐿(φ) 

Behavior represented as (infinite) sequence of 
evaluations of state and input variables:w ∈ 𝐸(𝑉)𝜔 



Simple Repair 
mainLight = Red; 
sideLight = Red; 
always @(posedge clock) 
begin 
  case (mainLight) 
    Red: if (mainSensor) 
             mainLight = Yellow; 
    Yellow: mainLight = Green; 
    Green:  mainLight = Red; 
  endcase // case (mainLight) 
  case (sideLight) 
    Red: if (sideSensor) 
             sideLight = Yellow; 
    Yellow: sideLight = Green; 
    Green: sideLight = Red; 
  endcase // case (sideLight) 
end 
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false 

Specification: 
never(mainLight == Green 
                          and  
            sideLight == Green) 

 No car crash: correct repair 
 Main street blocked 
     What went wrong? 

Lost intended behavior; changed 
behaviors unnecessarily 

Idea: semantic similarity  
• Keep correct behaviors 
• Modifications must not 

effect correct behaviors 

Extend objective: repair keeps correct behaviors 
𝐿 𝑃 ∩ 𝐿 φ ⊆ 𝐿 𝑃′  

(mainSensor & !(sideLight == Red & sideSensor)) 

Winning objective: repaired program is correct, i.e., 
  𝐿 𝑃′ ⊆ 𝐿(φ) 

[Angelic debugging, Chandra et al.] 
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Exact Repair Problem 

Program 𝑃′ is an “exact repair” of program 𝑃 for 
specification φ if  
(i) all correct behaviors of 𝑃 w.r.t. φ are part of 𝑃′, 
(ii) all behaviors of 𝑃’ are correct w.r.t. φ, i.e., 

𝐿 𝑃 ∩ 𝐿 φ ⊆ 𝐿 𝑃′ ⊆ 𝐿(φ) 
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P’ 

Ideal but sometimes too restrictive: 
• exact repair might not exists 
• exact repair might not be required 

φ =  φ𝑎 → φ𝑔 
Behaviors that do not satisfy φ𝑎 
are correct but might not need to be 
preserved 

       φ P 



Relaxed Repair Problem 
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P’        φ P ψ 

Program 𝑃′ is an “relaxed repair” of program 𝑃 for 
specifications φ and 𝜓 if  
(i) all correct behaviors of 𝑃 w.r.t. 𝜓 are part of 𝑃′, 
(ii) all behaviors of 𝑃’ are correct w.r.t. φ, i.e., 

𝐿 𝑃 ∩ 𝐿 𝜓 ⊆ 𝐿 𝑃′ ⊆ 𝐿(φ) 



Some choices for 𝜓  

• Exact repair 𝜓 = φ 

• Assume-Guarantee:  
if φ =  φ𝑎 → φ𝑔, then 𝜓 = φ𝑎 ∧ φ𝑔 

• Classical repair 𝜓 = ∅ 
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Reduction to Classical Synthesis 

Given two specifications φ and 𝜓 over variables 
𝑉 = 𝐼 ∪ 𝑂 and two programs 𝑃 and 𝑃’, then 𝑃′is a 
relaxed repair of 𝑃 if and only if 𝑃′satisfies the 
following formula 

𝐿 𝑃′ ⊆ 𝛼 with 

𝛼 = 𝐸(𝑉)𝜔 ∖ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉∪ 𝐿 𝑃 ∩ 𝐿(φ) 
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(All behaviors with a sequence of inputs for which P violates the spec)  

There exists a relaxed repair for program 𝑃 w.r.t. 
φ and 𝜓 if and only if language 𝛼 is realizable. 



General Algorithm 

1. Construct an (Buchi) automaton 𝐴𝛼 for  

𝛼 = 𝐸(𝑉)𝜔 ∖ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉∪ 𝐿 𝑃 ∩ 𝐿(φ) 

𝐴𝛼 can be constructed because 

• 𝑃, 𝜓, φ can be represented as Buchi automata and 

• Buchi automata are closed under intersection, 
union, projection, and complementation  

2. Synthesize 𝑃’ using 𝐴𝛼 as specification 
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Efficient Algorithm (1) 
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Lemma: Given program 𝑃 and LTL formula 𝜓 over 
variables 𝑉 = 𝐼 ∪ 𝑂, for all words 𝑤 ∈ 𝐸(𝑉)𝜔 

𝑤 ∈ 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉⟺ 𝑃(𝑤 ↓𝐼) ∈ 𝐿(𝜓) 

 

• This enables a simple procedure to check if a word 

produced by 𝑃′ lies in 𝐿 𝑃 ∩ 𝐿 𝜓 ↓𝐼↑𝑉  

• A synthesizer searching for 𝑃′ that satisfies α, can 
simulate 𝑃 and check it against 𝜓 to decide if 𝑃′ is 
allowed to deviate. 

 



Efficient Algorithm (2) 
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P 
faulty program 

P* 
P extended 

with allowed 
modifications 

𝐴𝜑 𝐴¬𝜓 

𝐴𝑒𝑞 

Inputs 

New Repair Approach: 
𝐴¬𝜓 … checks when P’ 

             can deviate from P 
𝐴𝑒𝑞 … checks when the output 

            of P and P’ coincide  

Classical Repair Approach: 
𝐴𝜑 … defines objective of  

           synthesis/repair game 

New Objective: 
𝐴𝜑 and (𝐴¬𝜓 or 𝐴𝑒𝑞) 



Implementation 

• Ideas/choice: 
– Modification restricted to expressions 

– Use MC instead of game engine:  
• encode “interesting” strategies using initial states (e.g., all 

memoryless strategies) 

• an initial state that does not lead to a CEX gives a correct 
repair. 

• Drawbacks: explodes with considered strategies 

• Benefits: can make use of any MC (and SEC optimizations) 

• Prototype based on NuSMV (with Cudd) 
– Tiny modification to return initial state(s) without CEX 
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PCI arbiter (partial specification) 

• PCI Bus 

• n Devices 

• n specifications 
always(ri implies eventually gi) 
checked in isolation 

• Off by 1 error 

• Approach without lower bound gives access to 
device i forever 

• Our approach fixes off by 1 error 

4th April 2014 B. Jobstmann 23 



Processor (unclear error location) 

• Error in one of the ALUs 

• Partial specification 

• Multiple suspected error locations 

• Approach without lower bound approach may 
modify all ALUs 

• Our approach only modifies faulty ALU 
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Read-Write-Lock (minimal locking) 

• Faulty implementation leads to dead-lock 

• Allow introduction of a lot of locking 

• Approach without lower bound may lock 
everything 

• Our approach introduces only necessary locks 
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Preliminary Results 
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Conclusions 

• New notion of program repair that  
– ensures that correct behaviors are kept 

– supports fixing bugs incrementally 

– facilitates repair with incomplete specifications 

– avoids degenerated repairs 

• Algorithm based on reactive program 
synthesis 

• Preliminary implementation supporting our 
claims of obtaining “better” repairs  
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Future Work 

• Quantitative notions of semantic similarity 

– Count ratio of modified paths vs all paths 

– Count ratio of modified symbols 

– Define distance measure between symbols 

• Repairs with look-ahead to increase the 
number of repairable systems 

• Repairing infinite-state system  
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